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Power-law exponents for the shear viscosity of non-Newtonian simple fluids
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Nonequilibrium molecular-dynamics simulations are performed to compute the shear viscosities of a simple
Lennard-Jones fluid across a wide range of densities and temperatures that span the liquid phase. It is found
that the standard mode-coupling value of B=0.5 for the exponent of the strain rate power-law dependence
(9=n9—m7®) is only applicable in a very narrow region of the thermodynamic state-space. More generally,
the exponent is a remarkably simple linear function of temperature and density, analogous to the linear
relationship that exists for the scaling exponents of the pressure and energy found previously by Ge er al.
[Phys. Rev. E 67, 061201 (2003)], and ranges between ~0.2 and 1.6. It is also found that the parameters 7,
and 7, are steep functions of increasing density for any particular temperature and can be represented by a

stretched exponential of the density.
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The viscoelastic behavior of simple nonequilibrium fluids
remains an active field of theoretical and simulation research
that has been stimulated recently by some interesting and
unexpected results. Theoretical investigations are largely mo-
tivated by the drive toward more comprehensive descriptions
and predictions of steady-state thermodynamic behavior
[1,2] or by the development and/or refinement of liquid state
theories based on mode-coupling formalisms [3] and alterna-
tive fluctuation-dissipation relationships [4]. Simulation
work is invaluable in exploring the implications of theory [5]
as well as being a useful guide to theory by providing data
that would otherwise be difficult to obtain experimentally.
There are few experimental measurements of the viscosities
of noble gas liquids, such as those for argon [6] and more
recently xenon [7]. To the author’s knowledge, there are no
published data on shear thinning of such simple fluids.

Recently, nonequilibrium molecular-dynamics (NEMD)
results on the pressure and energy of shearing fluids were
obtained that are in variance with standard mode-coupling
theory predictions [8]. In particular, it was demonstrated that
the energy and pressure of a simple Lennard-Jones fluid can
be described by simple power-law scaling, and that the
power exponents are linear functions of temperature and den-
sity [8(c)]. The same relationship was seen to apply to the
Barker-Fisher-Watts fluid [9], suggesting it is independent of
the specifics of the interaction potential [10]. It was also
demonstrated that a useful consequence of this simple scal-
ing behavior is that it can be used to predict the solid-liquid
phase coexistence curve at equilibrium [8(d)].

In this Brief Report, the previous work is extended by
computing the viscosities for the Lennard-Jones fluid across
a range of densities and temperatures that span the liquid
state. It will be shown that the exponents of the viscosity
versus strain rate curves have a remarkably simple analogous
linear dependence on the temperature and density in the lig-
uid phase.

As in previous work [8], the standard sllod equations of
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motion [11] coupled to a Gaussian thermostat are used to
simulate a three-dimensional system of 500 Lennard-Jones
fluid atoms undergoing homogeneous planar shear flow. A
truncation cutoff distance of 2.5¢ is used and the potential
parameters are set to o=g=1.0. Previous work on the power-
law exponents for the pressure and energy of simple fluids
[8(c)] showed that the value of the exponent was essentially
independent of the cutoff distance. No long-range corrections
are used because these do not affect the shape of any of the
pressure, energy, or viscosity profiles, and hence do not af-
fect the values of the scaling exponents [8(a)]. All units
quoted hereafter are in standard reduced, dimensionless
form. The equations of motion were integrated using a fifth-
order Gear predictor-corrector algorithm with an integration
time step of Ar=0.002.

Simulations were conducted at a number of densities for
each of three fixed temperatures such that the state-space of
the system is in the liquid phase [8(c)]. Temperatures were
set at 7=0.722, 1.00, and 1.25, and densities ranged from 0.7
to 0.95, to replicate the thermodynamic conditions of the
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FIG. 1. Typical viscosity curves. (a) 7=0.772, p=0.715; (b) T
=1.00, p=0.725; (c) T=1.25, p=0.725.
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FIG. 2. Viscosity exponents as a function of density for the three
temperatures studied. Symbols represent exponents computed from
the simulation data via Eq. (1), whereas lines are linear fits to the
data.

systems studied previously [8(c)]. For each temperature (7),
density (p), and strain rate (), the system was first allowed
to reach a nonequilibrium steady state, after which accumu-
lation of averages took place. Generally, five independent
trajectories of 2 million time steps each were run for each
state point (T,p,7y) and averages were accumulated over
these trajectories. Thus each (7, p, y) data point is an average
taken over 10 million time steps, corresponding to 20 000
reduced time units. Strain rates generally varied between 0.1
and 0.9, which are in the non-Newtonian shear-thinning re-
gime [8(c),12] and are safely lower than the notorious and
artificially induced “string-phase” region [13]. As this corre-
sponds to very large strain rates of the order of 10'°-10'> Hz

FIG. 3. Viscosity exponents presented in Fig. 2, but represented
as a three-dimensional surface. Circles are simulation data as in Fig.
2, while the planar surface is the fit given by Eq. (3), where the
coefficients are determined as a=3.9+0.2, b=1.04+0.06, and ¢
=5.1+0.2.
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FIG. 4. 7, as a function of density for each of the three tem-
peratures studied. Symbols are simulation data determined by Eq.
(1), while curves are fits to the data determined via Eq. (4). Values
of all fitting parameters are given in Table IV.

[14], comparisons to existing theories that are valid only in
the weak-field regime should be treated cautiously. The vis-
cosity was computed as the ratio of the shear stress to the
strain rate [11].

For each value of temperature and density, a viscosity
profile was computed, as displayed in Fig. 1. For all state
points simulated, a simple power law of the form

n=m-m? (1)

was found to fit the data very well, where 7,, 7,, and 3 are
all positive constants. In this case, 7, gives a rough approxi-
mation to the zero-shear viscosity and is likely to overesti-
mate its value. For example, comparison of 7, near the
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FIG. 5. 7, as a function of density for each of the three tem-
peratures studied. Symbols are simulation data determined by Eq.
(1), while curves are fits to the data determined via Eq. (4). Values
of all fitting parameters are given in Table IV.
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TABLE 1. Viscosity exponents (3) for all temperatures and densities. Values in parens are errors.

p
T 0.700 0.715 0.725 0.730 0.745 0.750 0.760 0.775 0.790 0.800 0.805 0.820 0.825 0.835 0.850 0.875 0900 0.925 0.950
0722  1.04 1.04 0.85 0.9 0.70 0.64 0.58 0.51 0.43 0.41 0.34

(0.09)  (0.09) (0.07) (0.1 (0.03)  (0.04) (0.06) (0.08)  (0.05) (0.06)  (0.08)
1.00 1.5 1.13 1.10 0.99 1.0 0.72 0.6 0.42 0.29 0.17

0.2) (0.03) (0.07) (0.07) (0.1) (0.06) (0.1)  (0.06) (0.06) (0.05)
1.25 1.57 1.3 1.5 1.26 1.17 1.01 0.79 0.69 0.60 0.46 0.31

(0.07) 0.1) (0.1) (0.09) (0.06) (0.08) (0.06) (0.05) (0.08) (0.07) (0.06)

TABLE II. Values of 7, for all temperatures and densities. Values in parens are errors.
p

T 0.700 0.715 0.725 0.730  0.745  0.750 0.760 0.775 0.790 0.800 0.805 0.820 0.825 0.835 0.850 0.875 0.900 0.925 0.950
0.722 1.261 1.367 1.507 1.64 1.836 2.04 2.29 2.60 3.03 34 4.1

(0.005)  (0.006) (0.009) (0.02) (0.007)  (0.01) (0.04) (0.08) (0.08) 0.1) (0.3)
1.00 1.219 1.385 1.577 1.812 2.08 2.50 2.99 39 53 8

(0.004) (0.001) (0.004) (0.006) (0.01) (0.02) (0.06) (0.1) (0.4) (1)
1.25 1.2115 1.366 1.527 1.734 1.975 2.28 2.69 3.18 3.81 4.8 6.5

(0.0007) (0.002) (0.002) (0.004) (0.004) (0.01) (0.02) (0.03) (0.08) (0.2) (0.5)

TABLE III. Values of #; for all temperatures and densities. Values in parens are errors.
p

T 0.700 0.715 0.725 0.730 0.745 0.750  0.760  0.775 0.790 0.800  0.805 0.820 0.825 0.835 0.850 0.875 0.900 0.925 0.950
0.722  0.154 0.186 0.242 0.29 0.389 0.50 0.64 0.84 1.15 1.4 2.0

(0.005)  (0.005) (0.008) (0.01) (0.006)  (0.04) (0.03) (0.07)  (0.07) 0.1) (0.2)
1.00 0.090 0.123 0.171 0.243 0.33 0.55 0.82 1.5 2.6 5

(0.004) (0.001) (0.004) (0.006) (0.01) (0.02) (0.06) (0.1) (0.4) (1)
1.25 0.0587 0.086 0.107 0.154 0.218 0.323 0.51 0.76 1.13 1.8 32

(0.0009) (0.002) (0.002) (0.004) (0.004) (0.008) (0.02) (0.02) (0.07) (0.2) (04)
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TABLE IV. Parameters for the fit to Eq. (4). Values in parens are
errors in the fit parameters.

i T=0.722 7=1.00 T=125
k; 0 0.62 (0.05) 1.14 (0.09) 0.89 (0.09)
1 0.002 (0.003) 0.05 (0.01) 0.019 (0.009)
m; 0 4.24 (0.05) 3.94 (0.09) 2.61 (0.07)
1 10 (1) 7.6 (0.2) 6.4 (0.5)
qi 0 5.0 (0.3) 8.8 (0.6) 5.5(0.5)
1 2.4 (0.6) 5.9 (0.4) 4.2 (0.5)

Lennard-Jones triple point (p=0.835, T=0.722) gives a value
of 3.4+0.1, compared with 3.0+0.1 obtained by an indepen-
dent Green-Kubo calculation. It is well known that even
simple fluids have Newtonian and non-Newtonian regions
[15]. In order to obtain an accurate estimation of the zero-
shear viscosity, more data are required at weak-field
strengths, but this is not the goal of this Brief Report. In this
paper, no assumption has been made about the value of the
exponent B, which is known to be ~% for simple fluids near
the Lennard-Jones triple point by NEMD simulation [16]. In
this work, the values of all parameters 7, 7, and B are
found by fitting Eq. (1) to the simulation data.

In Fig. 2, the viscosity exponents are plotted for the three
temperatures and various densities investigated. For each
temperature, a simple linear relationship is found for the ex-
ponent

IB(T’P) = BO(T’p) - BI(T’P)P’ (2)

where Bo(T,p) and B(T,p) are positive constants. As with
the case for the exponents of pressure and energy reported
earlier [8(c)], we find that the viscosity exponent can also be
expressed as a linear function of both temperature and den-
Sity,

B(T,p)=a+bT - cp. (3)

The values of the constants a, b, and ¢ are determined by
multiple regression and have the values a=3.9+0.2, b
=1.04+£0.06, and ¢=5.1£0.2. The exponents can therefore
be represented as a planar surface in thermodynamic state-
space, as depicted in Fig. 3. As can be seen from Figs. 2 and
3, the exponent can have any value between ~0.2 and 1.6 in
the liquid phase. The mode-coupling theory value of 0.5 [17]
is found in only a narrow region of thermodynamic state
space between approximately 0.8<p=<0.92, depending on
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the temperature. Values of exponents for each temperature
and density are given in Table I. Recently, Santamaria-Holek
et al. [2] have derived expressions for the shear viscosity of
a gas of Brownian particles that, to leading order, are func-
tions of strain rate raised to some power, J,. They plot flow
curves for 5y=§ corresponding to a density of 0.46, but not
for a wide range of densities and temperatures.

The values of 7, and 7, can also be determined by plot-
ting each value for each temperature and density. These are
displayed in Figs. 4 and 5, respectively, and are given in
Tables II and III. Note that for each temperature, the values
of 7, and 7, increase rapidly as density increases. This in-
crease is so rapid that a simple power-law fit to the data
results in large power exponents ranging between ~8 and
25. Similarly, a high-order polynomial series provides a rea-
sonable fit, but this is somewhat artificial. For each tempera-
ture, 7, and 7; can be simply and accurately expressed by a
stretched exponential of the form

;= k; exp(m;p%i), (4)

where i=0 or 1 labels the parameter 7, or 7, respectively,
and k;, m;, and ¢; are constants for each particular tempera-
ture. Equation (4) gives a better fit to the data than the simple
power-law expression 77,-=6,»+/2ipéi, where ¢, 12,-, and ¢; are
constants. A further advantage of this relationship is that the
exponents ¢; are not excessively high. Values of all fitting
parameters k;, m;, and g; for each of the three temperatures
are given in Table I'V.

That 7, and 7, are well represented by a stretched expo-
nential (or by a high simple power-law exponent) reflects the
rapidity at which 7, and 7, diverge as functions of density.
This divergence is rapid as the fluid approaches the liquid-
solid phase transition, but its actual behavior in this coexist-
ence phase is as yet unknown. There is evidence [18] that the
simple linear scaling of the pressure and energy exponents as
functions of temperature and density no longer applies in the
liquid-solid or vapor-liquid coexistence phase regions, so
care must be taken in not extrapolating beyond the data set
that spans only the pure liquid phase.

We hope that the new simulation results presented in this
Brief Report, along with the complete set of data provided,
will be of assistance in the development of more general
liquid state theories for the viscoelastic and rheological prop-
erties of fluids.

The author thanks the Australian Partnership for Ad-
vanced Computing (APAC) for a generous allocation of
computer time.
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